Search results for " molybdenum oxide"

showing 4 items of 4 documents

Efficient Vacuum Deposited P-I-N Perovskite Solar Cells by Front Contact Optimization.

2020

Hole transport layers HTLs are of fundamental importance in perovskite solar cells PSCs , as they must ensure an efficient and selective hole extraction, and ohmic charge transfer to the corresponding electrodes. In p i n solar cells, the ITO HTL is usually not ohmic, and an additional interlayer such as MoO3 is usually placed in between the two materials by vacuum sublimation. In this work, we evaluated the properties of the MoO3 TaTm TaTm is the HTL N4,N4,N4 amp; 8243;,N4 amp; 8243; tetra [1,1 amp; 8242; biphenyl] 4 yl [1,1 amp; 8242; 4 amp; 8242;,1 amp; 8243; terphenyl] 4,4 amp; 8243; diamine hole extraction interface by selectively annealing either MoO3 prior to the deposition of TaTm o…

FabricationMaterials scienceAnnealing (metallurgy)Perovskite solar cell02 engineering and technologyperovskite solar cell ; molybdenum oxide ; vacuum deposition ; processing ; hole transport layer010402 general chemistryhole transport layer01 natural sciencesmolybdenum oxidelcsh:ChemistryVacuum depositionWork functionOhmic contactMaterialsCèl·lules fotoelèctriquesOriginal Researchbusiness.industryGeneral Chemistryvacuum-deposition021001 nanoscience & nanotechnologyperovskite solar cell0104 chemical sciencesActive layerChemistrylcsh:QD1-999ElectrodeOptoelectronicsprocessing0210 nano-technologybusinessFrontiers in chemistry
researchProduct

Characterization of the defect density states in MoOx for c-Si solar cell applications

2021

Thin layers of MoOx have been deposited by thermal evaporation followed by post-deposition annealing. The density of states distributions of the MoOx films were extracted deconvoluting the absorption spectra, measured by a photothermal deflection spectroscopy setup, including the small polaron contribution. Results revealed a sub-band defect distribution centered 1.1 eV below the conduction band; the amplitude of this distribution was found to increase with post-deposition annealing temperature and film thickness.

Materials scienceAbsorption spectroscopyc-Si solar cell photovoltaic transition metal oxide molybdenum oxide density of states small polaronAnnealing (metallurgy)02 engineering and technologyPolaron01 natural sciencesMolecular physicsSettore ING-INF/01 - Elettronicalaw.inventionlaw0103 physical sciencesSolar cellMaterials ChemistryElectrical and Electronic EngineeringSpectroscopy010302 applied physicsThin layersDensity of statesPhotothermal therapy021001 nanoscience & nanotechnologyCondensed Matter Physicsc-Si solar cellMolybdenum oxideElectronic Optical and Magnetic MaterialsSmall polaronTransition metal oxideDensity of states0210 nano-technologyPhotovoltaicDensity of state
researchProduct

Characterization of defect density states in MoOx for c-Si solar cell applications

Layers of MoOx have been deposited by thermal evaporation followed by post-deposition annealing (PDA). The density of states (DOS) distributions of the MoOx films were extracted deconvoluting the absorption spectra, measured by a phothermal deflection spectroscopy setup, including the small polaron contribution. Results revealed a sub-band defect distribution centered 1.1 eV below the conduction band; the amplitude of this distribution was found to increase with PDA temperature and film thickness.

c-Si solar cell photovoltaic transition metal oxide molybdenum oxide density of states small polaronSettore ING-INF/01 - Elettronica
researchProduct

TRANSITION METAL OXIDES AS SELECTIVE CONTACTS FOR C-SI SOLAR CELLS

2021

transition metal oxides solar cell c-Si defects small polaron molybdenum oxide titanium oxide efficiency photovoltaicSettore ING-INF/01 - Elettronica
researchProduct